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ABSTRACT 

The present paper dials with the proposed and analyzed of an eco-epidemiological system consisting of prey-

predator system involving infectious disease in predator population that transmitted vertically within predator 

population only. Nonlinear functional response is used to describe the predation process. All possible equilibrium 

points are determined. The local stability analysis of these points are studied. The basin of attraction of each point 

is also investigated. It is observed that the existence of vertically transmitted disease in predator caused to 

extinction to predator population and then the system losses their persistence.  
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I. INTRODUCTION 
It is well known that diseases influence both the dynamics of their hosts as well as the dynamics of interacting 

species like predators, prey and competitors. Further, interacting species can influence disease dynamics by 

altering the host’s dynamics. Therefore prey-predator interactions and disease in the system affects each other [1-

7]. The combination of these two effects is often called eco-epidemiology, the interaction of ecology and 

epidemiology.  

Most of the previous studies of infectious diseases were observed that the disease in animal populations 

cussed that mortality of the host population or reduced reproduction of the host populations in their natural habitats 

[6-9]. Indeed reduced population sizes and destabilization of equilibrium into oscillations are caused by the 

presence of infectious disease in one or both of the populations. 

Many of the eco-epidemiological studies are restricted to the situations where the infectious disease presence in 

the prey species only [6, 9-11]. Few investigations take in to account the spread of disease from prey to predator 

through predation process of infected prey [12-15]. On the other hand there are some investigations about prey-

predator model with disease in the predator population. Haque [16] proposed a prey-predator model includes SIS 

parasitic infection in the predator population with linear functional response and nonlinear disease incidence rate. 

Haque and Venturino [17] considered a prey-predator model with SI epidemic disease spread in predators 

involving linear functional response. Das [18] studied a prey-predator model with SI epidemic disease in predators 

included Holling type-II as a functional response. Venturino [6] proposed and analyzed prey-predator model with 

SIS disease in predators included linear functional response and linear disease incidence. Haque and Venturino 

[19] considered a prey-predator model with SI epidemic disease spread in predators included ratio-dependent 

functional response and linear disease’s incidence rate. Recently, Naji and Yaseen [20] proposed and analyzed a 

mathematical model describing prey-predator model having SIS epidemic disease in the predator population with 

nonlinear functional response, represented by Holling type-II and ratio-dependent incidence rate.  

Keeping the above in view, in this research work, an eco-epidemiological system consisting of prey-predator 

model involving SI-type of vertically transmitted disease in predator has been proposed and analyzed. It is 

assumed that the predator consumed the prey species according to nonlinear functional response that given by 

Cosner et al. [21]. The structure of the present paper is arranged as follows, the model formulated in next section. 

Section 3 contains the local stability analysis, while section 4 determine the basin of attraction of each equilibrium 

point. Finally the discussions and conclusions are given in the section 5.      

II. THE MODEL FORMULATION 

 In this section a prey-predator system with vertically transmitted infectious disease in predator population is 

mathematically formulated. Now, in order to formulates the model that describe the dynamics of such real world 

system the following hypotheses are considered 

1. Let 𝑋(𝑡) denotes the density of the prey species at time 𝑡, 𝑌(𝑡) is the population density of the susceptible 

predator at time 𝑡 and 𝑍(𝑡) represents the population density of the infected predator at time 𝑡. 
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2. It is assumed that in the absence of the predator the prey species grows logistically with intrinsic growth 

rate 𝑟 > 0 and carrying capacity 𝐾 > 0. 

3. The predators populations, represented by 𝑌(𝑡) and 𝑍(𝑡), consume the prey according to the predator 

dependent type of functional response, that originally proposed by Cosner et al. [21], in which 𝑎 > 0 and 

𝑐 > 0 denote the attack rates respectively while 𝑏 > 0 represents the predator half saturation constant. 

4. It is assumed that the disease in predator population, is transferred from parent to offspring, which is 

known vertical transmitted. Furthermore, the disease is also transmitted from infected predator to 

susceptible predator by contact according to mass action law with infected rate  𝜆 > 0. 

5. The predators decay exponentially in the absence of the prey species with natural death rate 𝛾1 > 0, 

while the disease causes extra death within the population for infected predator represented by 𝛾2 > 0 . 

Accordingly the dynamics of the prey-predator system with infectious disease in predator that described above 

can be represented mathematically by the following set of nonlinear ordinary differential equations: 

 

𝑑𝑋

𝑑𝑡
= 𝑟𝑋 (1 −

𝑋

𝐾
) −

𝑎𝑋𝑌2

𝑏+𝑋𝑌
−
𝑐𝑋𝑍2

𝑏+𝑋𝑍
      

𝑑𝑌

𝑑𝑡
= 𝑒1

𝑎𝑋𝑌2

𝑏+𝑋𝑌
− 𝜆𝑌𝑍 − 𝛾1𝑌              

𝑑𝑍

𝑑𝑡
= 𝑒2

𝑐𝑋𝑍2

𝑏+𝑋𝑍
+ 𝜆𝑌𝑍 − (𝛾1 + 𝛾2)𝑍

                                     (1) 

with 𝑋(0) ≥ 0, 𝑌(0) ≥ 0, 𝑍(0) ≥ 0 and 0 < 𝑒𝑖 < 1 for 𝑖 = 1,2 denote to the conversion rates of 𝑌 and 𝑍 

respectively. Recall that, due to the biological meaning of the variables given in system (1) the system defines on 

the following domain 𝑅+
3 = {(𝑋, 𝑌, 𝑍) ∈ 𝑅3: 𝑋 ≥ 0, 𝑌 ≥ 0, 𝑍 ≥ 0}.   

Note that the interaction functions in the right hand side of system (1) are continuous and have continuous partial 

derivatives, and hence they are Liptchazian functions. Therefore system (1) has a unique solution. Moreover the 

all solutions of system (1) are uniformly bounded as shown in the following theorem. 

Theorem (1): All the solutions of system (1) that initiate in 𝑅+
3  are uniformly bounded. 

Proof: Let (𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡)) be any solution initiate in 𝑅+
3 . Since we have that 

 
𝑑𝑋

𝑑𝑡
= 𝑟𝑋 (1 −

𝑋

𝐾
)  

Then straightforward computation shows that 𝑋 ≤ 𝐾 as 𝑡 → ∞. Now consider the function 𝑀 = 𝑋 + 𝑌 + 𝑍, then 

we obtain that 

 
𝑑𝑀

𝑑𝑡
+ 𝜌𝑀 ≤ 2𝑟   

Here 𝜌 = 𝑚𝑖𝑛. {𝑟, 𝛾1}. So, straightforward computation gives that 𝑀 ≤
2𝑟

𝜌
 as 𝑡 → ∞. Hence all solutions are 

uniformly bounded.                                             ■ 

III.  LOCAL STABILITY ANALYSIS  

   In this section the existence conditions of all possible equilibrium points of system (1) are established and 

then their local stability analyses are discussed. There are at most five non-negative equilibrium points of system 

(1), these are described as follows: 

The vanishing equilibrium point that denoted by 𝐸0 = (0,0,0) and the predator free equilibrium point, say 𝐸1 =
(𝐾, 0,0), on the 𝑋 −axis, are always exist.  

The disease free equilibrium point 𝐸2 = (�̅�, �̅�, 0)  where 
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 �̅� =
𝑏𝛾1

(𝑎𝑒1−𝛾1)�̅�
                           (2) 

while �̅� is a positive root of the third degree polynomial that given by 

 𝑌3 −
𝑟𝑏𝑒1

𝑎𝑒1−𝛾1
𝑌 +

𝑟𝑏2𝑒1𝛾1

𝐾(𝑎𝑒1−𝛾1)
2 = 0                                      (3) 

Now using the method of Cardano for finding the root, its easy to verify that, Eq. (3) has a unique positive root 

provided that 

 27𝑏𝛾1
2 > 4𝐾2𝑟𝑒1(𝑎𝑒1 − 𝛾1)                                      (4a) 

This root take the form (𝛼1 −
𝛽1

𝛼1
), where 𝛼1 denotes one of the three roots of the equation 

 
1

2
[−𝜇1 + √𝜇12 + 4𝛽1]

1

3 = 0                                    (4b) 

here 𝜇1 =
𝑟𝑏2𝑒1𝛾1

𝐾(𝑎𝑒1−𝛾1)
2 ;  𝛽1 = −

𝑟𝑏𝑒1

3(𝑎𝑒1−𝛾1)
. 

Moreover, for positivity of �̅� we should have 

 𝑎𝑒1 > 𝛾1                                      (4c) 

Thus its clear that conditions (4a) and (4c) are the necessary and sufficient conditions for the existence of 𝐸2. 

Similarly, the susceptible predator free equilibrium point 𝐸3 = (�̂�, 0, �̂�)  where 

 �̂� =
𝑏(𝛾1+𝛾2)

(𝑐𝑒2−(𝛾1+𝛾2))�̂�
                          (5) 

while �̂� is a positive root of the third degree polynomial that given by 

 𝑍3 −
𝑟𝑏𝑒2

𝑎𝑐−(𝛾1+𝛾2)
𝑍 +

𝑟𝑏2𝑒2(𝛾1+𝛾2)

𝐾(𝑐𝑒2−(𝛾1+𝛾2))
2 = 0                                     (6) 

Now again by using the method of Cardano for finding the root, it’s easy to verify that, Eq. (6) has a unique 

positive root provided that 

 27𝑏(𝛾1 + 𝛾2)
2 > 4𝐾2𝑟𝑒2(𝑐𝑒2 − (𝛾1 + 𝛾2))                                          (7a) 

This root take the form (𝛼2 −
𝛽2

𝛼2
), where 𝛼2 denotes one of the three roots of the equation 

 
1

2
[−𝜇2 +√𝜇2

2 + 4𝛽2]
1

3 = 0                                    (7b) 

here 𝜇2 =
𝑟𝑏2𝑒2(𝛾1+𝛾2)

𝐾(𝑐𝑒2−(𝛾1+𝛾2))
2 ;  𝛽2 = −

𝑟𝑏𝑒2

3(𝑐𝑒2−(𝛾1+𝛾2))
. 

Moreover, for positivity of �̂� we should have 

 𝑐𝑒2 > 𝛾1 + 𝛾2                                      (7c) 
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Thus it’s clear that conditions (7a) and (7c) are the necessary and sufficient conditions for the existence of 𝐸3. 

On other hand there is no equilibrium point in the 𝑌𝑍 −plane, due to the fact that the predator can’t survive without 

its food.  

Finally the positive equilibrium point 𝐸4 = (𝑋
∗, 𝑌∗, 𝑍∗) exists uniquely in the interior of 𝑅+

3  provided that there is 

a positive solution to the following algebraic system of equations. 

 

𝑓1(𝑋, 𝑌, 𝑍) = 𝑟 (1 −
𝑋

𝐾
) −

𝑎𝑌2

𝑏+𝑋𝑌
−

𝑐𝑍2

𝑏+𝑋𝑍
= 0     

𝑓2(𝑋, 𝑌, 𝑍) = 𝑒1
𝑎𝑋𝑌

𝑏+𝑋𝑌
− 𝜆𝑍 − 𝛾1 = 0              

𝑓3(𝑋, 𝑌, 𝑍) = 𝑒2
𝑐𝑋𝑍

𝑏+𝑋𝑍
+ 𝜆𝑌 − (𝛾1 + 𝛾2) = 0

                                               (8a) 

Straightforward computation shows that system (8) has a unique positive solution given by 

𝑍∗ =
1

𝜆
[
𝑎𝑒1𝑋

∗𝑌∗

𝑏+𝑋∗𝑌∗
− 𝛾1]                                                  (8b) 

here (𝑋∗, 𝑌∗) represents a positive intersection point between the following two isoclines: 

𝑓(𝑋, 𝑌) = 𝑀1𝑋
2𝑌2 +𝑀2𝑋

2𝑌 +𝑀3𝑋𝑌
2 +𝑀4𝑋𝑌 + 𝑀5𝑋 + 𝑀6𝑌 + 𝑀7 = 0

𝑔(𝑋, 𝑌) = 𝑁1𝑋
4𝑌2+𝑁2𝑋

3𝑌2 + 𝑁3𝑋
3𝑌 + 𝑁4𝑋

2𝑌3                                              

          +𝑁5𝑋
2𝑌2 + 𝑁6𝑋

2𝑌 + 𝑁7𝑋
2 + 𝑁8𝑋𝑌 + 𝑁9𝑋𝑌

2           

+𝑁10𝑋𝑌
3 + 𝑁11𝑋 + 𝑁12𝑌

2 + 𝑁13 = 0

 

where  𝑀1 = 𝜆𝛾1 − 𝑎𝑒1𝜆, 𝑀2 = 𝑎𝑐𝑒1𝑒2 − 𝑐𝑒2𝛾1 + 𝛾1(𝛾1 + 𝛾2) − 𝑎𝑒1(𝛾1 + 𝛾2), 𝑀3 = −𝑏𝜆
2, 𝑀4 = −𝑏𝜆𝛾2, 

𝑀5 = 𝜆𝛾1(𝛾1 + 𝛾2 − 𝑐𝑒2), 𝑀6 = −𝑏𝜆
2 and 𝑀7 = −𝑏𝜆(𝛾1 + 𝛾2). While 𝑁1 = 𝑟𝜆(𝛾1 − 𝑒1𝑎), 𝑁2 = 𝑟𝜆[𝐾(𝑒1𝑎 −

𝛾1) − 𝜆𝑏], 𝑁3 = 𝑟𝜆𝑏(2𝛾1 − 𝑒1𝑎), 𝑁4 = 𝜆𝐾𝑎(𝛾1 − 𝑒1𝑎), 𝑁5 = 𝐾[𝑟𝜆
2𝑏 + 2𝑐𝑒1𝑎𝛾1 − 𝑐(𝛾1

2 + 𝑒1
2𝑎2)], 𝑁6 =

𝑟𝜆𝑏[𝐾𝑒1𝑎 − 2𝐾𝛾1 − 2𝜆𝑏], 𝑁7 = 𝑟𝜆𝑏
2𝛾1, 𝑁8 = 2𝐾𝑏[𝑟𝜆

2𝑏 + 𝑐𝛾1(𝑒1𝑎 − 𝛾1)], 𝑁9 = 𝜆𝐾𝑎𝑏𝛾1, 𝑁10 = −𝜆
2𝐾𝑎𝑏, 

𝑁11 = −𝑟𝜆𝑏
2(𝐾𝛾1 + 𝜆𝑏), 𝑁12 = −𝜆

2𝐾𝑎𝑏2 and 𝑁13 = 𝐾𝑏
2(𝑟𝜆2𝑏 − 𝛾1

2𝑐). 

Clearly as 𝑌 → 0 then the first isocline 𝑓(𝑋, 𝑌) intersect the 𝑋 −axis at a positive point given by 𝑋1 = −
𝑀7
𝑀5

 

provided that 

 𝛾1 + 𝛾2 > 𝑐𝑒2                                       (8c) 

However as 𝑌 → 0 in the second isocline 𝑔(𝑋, 𝑌) we obtain the following second order equation 𝑁7𝑋
2 +𝑁11𝑋 +

𝑁13 = 0, which intersects the  𝑋 −axis at a positive point given by 𝑋2 = −
𝑁11
2𝑁7

+
1
2𝑁7

√𝑁11
2 −4𝑁7𝑁13 provided that 

 𝑟𝜆2𝑏 < 𝛾1
2𝑐                                     (8d) 

Therefore it’s easy to verify that the above two isoclines have a unique positive intersection point given by (𝑋∗, 𝑌∗) 
provided that the following conditions are satisfied: 

  

𝑋1 < 𝑋2

𝑑𝑌

𝑑𝑋
= −

𝜕𝑓

𝜕𝑋
𝜕𝑓

𝜕𝑌

> 0

𝑑𝑌

𝑑𝑋
= −

𝜕𝑔

𝜕𝑋
𝜕𝑔

𝜕𝑌

< 0

                                                    (8e) 

Moreover, 𝑍∗ will be positive if and only if 
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𝑎𝑒1𝑋

∗𝑌∗

𝑏+𝑋∗𝑌∗
> 𝛾1                          (8f) 

Accordingly, system (1) has a unique positive equilibrium point that is given by 𝐸4 = (𝑋
∗, 𝑌∗, 𝑍∗) if the conditions 

(8c)-(8f) are satisfied. 

Now the general Jacobian matrix of system (1) at the point (𝑋, 𝑌, 𝑍), can be written as: 

𝐽(𝑋, 𝑌, 𝑍) =

(

 
 
𝑓1 + 𝑋

𝜕𝑓1

𝜕𝑋
𝑋
𝜕𝑓1

𝜕𝑌
𝑋
𝜕𝑓1

𝜕𝑍

𝑌
𝜕𝑓2

𝜕𝑋
𝑓2 + 𝑌

𝜕𝑓2

𝜕𝑌
𝑌
𝜕𝑓2

𝜕𝑍

𝑍
𝜕𝑓3

𝜕𝑋
𝑍
𝜕𝑓3

𝜕𝑌
𝑓3 + 𝑍

𝜕𝑓3

𝜕𝑍)

 
 

                                   (9) 

where 
𝜕𝑓1

𝜕𝑋
= −

𝑟

𝐾
+

𝑎𝑌3

(𝑏+𝑋𝑌)2
+

𝑐𝑍3

(𝑏+𝑋𝑍)2
, 
𝜕𝑓1

𝜕𝑌
= −

𝑎(2𝑏+𝑋𝑌)𝑌

(𝑏+𝑋𝑌)2
, 
𝜕𝑓1

𝜕𝑍
= −

𝑐(2𝑏+𝑋𝑍)𝑍

(𝑏+𝑋𝑍)2
 

 
𝜕𝑓2

𝜕𝑋
=

𝑎𝑏𝑒1𝑌

(𝑏+𝑋𝑌)2
, 
𝜕𝑓2

𝜕𝑌
=

𝑎𝑏𝑒1𝑋

(𝑏+𝑋𝑌)2
, 
𝜕𝑓2

𝜕𝑍
= −𝜆,  

 
𝜕𝑓3

𝜕𝑋
=

𝑐𝑏𝑒2𝑍

(𝑏+𝑋𝑍)2
, 
𝜕𝑓3

𝜕𝑌
= 𝜆, 

𝜕𝑓3

𝜕𝑍
=

𝑐𝑏𝑒2𝑋

(𝑏+𝑋𝑍)2
 

Accordingly, the Jacobian matrix of system (1) at vanishing equilibrium point 𝐸0 is 

𝐽(𝐸0) = (
𝑟 0 0
0 −𝛾1 0
0 0 −(𝛾1 + 𝛾2)

)                                                (10a)                                                                                   

Clearly, the eigenvalues of 𝐽(𝐸0) are  

 𝜎0𝑋 = 𝑟 > 0, 𝜎0𝑌 = −𝛾1 < 0, 𝜎0𝑍 = −(𝛾1 + 𝛾2) < 0                                                          (10b) 

where 𝜎0𝑢; 𝑢 = 𝑋, 𝑌, 𝑍 represents the eigenvalue  of 𝐽(𝐸0) in the 𝑢 −direction. Therefore the vanishing 

equilibrium point 𝐸0 is a saddle point. 

The Jacobian matrix of system (1) at the predator free equilibrium point 𝐸1 is written 

 𝐽(𝐸1) = (
−𝑟 0 0
0 −𝛾1 0
0 0 −(𝛾1 + 𝛾2)

)                                               (11a) 

Therefore, the eigenvalues of 𝐽(𝐸1) are  

 𝜎1𝑋 = −𝑟 < 0, 𝜎1𝑌 = −𝛾1 < 0, 𝜎1𝑍 = −(𝛾1 + 𝛾2) < 0                                            (11b) 

Consequently, the predator free equilibrium point 𝐸1 is always locally asymptotically stable. 

Moreover the Jacobian matrix of system (1) at the disease free equilibrium point 𝐸2 = (�̅�, �̅�, 0) can be written as 

 𝐽(𝐸2) =

(

 
 
�̅� [−

𝑟

𝐾
+
𝑎�̅�3

�̅�1
2] −

𝑎(2𝑏+�̅��̅�)�̅��̅�

�̅�1
2 0

𝑎𝑏𝑒1�̅�
2

�̅�1
2

𝑎𝑏𝑒1�̅��̅�

�̅�1
2 −𝜆�̅�

0 0 𝜆�̅� − (𝛾1 + 𝛾2))

 
 
= (𝑏𝑖𝑗)                                                           (12a) 

Thus the eigenvalues of this matrix can be written as: 
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 𝜎2𝑋, 𝜎2𝑌 =
𝑇2

2
±
1

2
√𝑇2 − 4𝐷2;  𝜎2𝑍 = 𝜆�̅� − (𝛾1 + 𝛾2)                                              (12b) 

here  𝑇2 =
�̅�

𝐾�̅�1
2 [−𝑟�̅�1

2
+ 𝑎𝐾�̅�(�̅�2 + 𝑏𝑒1)] 

 𝐷2 =
𝑎𝑏𝑒1�́��̅�

𝐾�̅�1
4 [−𝑟�̅��̅�1

2
+ 2𝑎𝐾�̅�2(�̅��̅� + 𝑏)] 

with �̅�1 = 𝑏 + �̅��̅�, Hence all the above eigenvalues have negative real parts and then 𝐸2 is locally asymptotically 

stable if the following conditions hold: 

 𝜆 <
𝛾1+𝛾2

�̅�
                                     (12c) 

 𝑎𝐾 �̅�(�̅�2 + 𝑏𝑒1) < 𝑟�̅�1
2
<
2𝑎𝐾�̅�2

�̅�
�̅�1                                               (12d) 

On the other hand the Jacobian matrix of system (1) at the susceptible predator free equilibrium point 𝐸3 =
(�̂�, 0, �̂�) can be written as 

 𝐽(𝐸3) =

(

 
 
�̂� [−

𝑟

𝐾
+
𝑐�̂�3

�̂�2
2] 0 −

𝑐(2𝑏+�̂��̂�)�̂��̂�

�̂�2
2

0 −𝜆�̂� − 𝛾1 0
𝑐𝑏𝑒2�̂�

2

�̂�2
2 𝜆�̂�

𝑐𝑏𝑒2�̂��̂�

�̂�2
2 )

 
 
= (𝑐𝑖𝑗)                                                             (13a) 

Thus the eigenvalues of this matrix can be written as: 

 𝜎3𝑋, 𝜎3𝑍 =
𝑇3

2
±
1

2
√𝑇3 − 4𝐷3;  𝜎3𝑌 = −𝜆�̂� − 𝛾1 < 0                                                            (13b) 

where  𝑇3 =
�̂�

𝐾�̂�2
2 [−𝑟�̂�2

2
+ 𝑐𝐾�̂�(�̅�2 + 𝑏𝑒2)] 

 𝐷3 =
𝑐𝑏𝑒2�̂��̂�

𝐾�̂�2
4 [−𝑟�̂��̂�2

2
+ 2𝑐𝐾�̂�2�̂�2] 

with �̂�2 = 𝑏 + �̂��̂�, Hence all the above eigenvalues have negative real parts and then 𝐸3 is locally asymptotically 

stable if the following condition holds: 

 𝑐𝐾�̂�(�̂�2 + 𝑏𝑒2) < 𝑟�̂�2
2
<
2𝑐𝐾�̂�2

�̂�
�̂�2                                               (13c) 

Finally, The Jacobian matrix of system (1) at the positive equilibrium point 𝐸4 = (𝑋
∗, 𝑌∗, 𝑍∗) is given by 

𝐽(𝐸4) = (𝑎𝑖𝑗); 𝑖, 𝑗 = 1,2,3                                                                                                                            (14a)  

here 𝑎11 = −
𝑟𝑋∗

𝐾
+
𝑎𝑋∗𝑌∗

3

𝑅1
∗2 +

𝑐𝑋∗𝑍∗
3

𝑅2
∗2 ; 𝑎12 = −

𝑎(2𝑏+𝑋∗𝑌∗)𝑋∗𝑌∗

𝑅1
∗2 , 𝑎13 = −

𝑐(2𝑏+𝑋∗𝑍∗)𝑋∗𝑍∗

𝑅2
∗2 ; 𝑎21 =

𝑒1𝑎𝑏𝑌
∗2

𝑅1
∗2 ; 𝑎22 =

𝑒1𝑎𝑏𝑋
∗𝑌∗

𝑅1
∗2 ; 𝑎23 = −𝜆𝑌

∗; 𝑎31 =
𝑒2𝑏𝑐𝑍

∗2

𝑅2
∗2 ; 𝑎32 = 𝜆𝑍

∗; and 𝑎33 =
𝑒2𝑏𝑐𝑋

∗𝑍∗

𝑅2
∗2  with 𝑅1

∗ = 𝑏 + 𝑋∗𝑌∗; 𝑅2
∗ = 𝑏 + 𝑋∗𝑍∗. 

Thus the characteristic equation of 𝐽(𝐸4) can be written as:  

𝜎4
3 + 𝐴1𝜎4

2 + 𝐴2𝜎4 + 𝐴3 = 0                                         (14b) 

with 𝐴1 = −(𝑎11 + 𝑎22 + 𝑎33), 
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 𝐴2 = 𝑎11𝑎22 − 𝑎12𝑎21 + 𝑎11𝑎33 − 𝑎13𝑎31 + 𝑎22𝑎33 − 𝑎23𝑎32 

 𝐴3 = 𝑎33(𝑎12𝑎21 − 𝑎11𝑎22) + 𝑎23(𝑎11𝑎32 − 𝑎12𝑎31) + 𝑎13(𝑎22𝑎31 − 𝑎21𝑎32) 

 

Δ = −𝑎11𝑎22[𝑎11 + 𝑎22 + 2𝑎33] − (𝑎11 + 𝑎33)[𝑎11𝑎33 − 𝑎13𝑎31]

+(𝑎11 + 𝑎22)𝑎12𝑎21 + (𝑎22 + 𝑎33)[𝑎23𝑎32 − 𝑎22𝑎33]
+𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32

 

Therefore, by using the Routh-Hurwitz criterion the following theorem, which presents the local stability 

conditions of 𝐸4, can be proved directly. 

Theorem (2): The positive equilibrium point 4E  of system (1) is locally asymptotically stable in 
3
R  provided 

that the following sufficient conditions are satisfied 

 𝑚𝑎𝑥. {Γ1, Γ2} <
𝑟

𝐾
< Γ3                                                (15a) 

 
2𝑎𝑌∗

2

𝑅1
∗ +

𝑐𝑋∗𝑍∗
3

𝑅2
∗2 <

𝑟𝑋∗

𝐾
<
𝑎𝑋∗𝑌∗

3

𝑅1
∗2 +

2𝑐(𝑋∗𝑍∗+𝑏)𝑍∗
2

𝑅2
∗2                                              (15b) 

 𝑒2𝑏𝑐𝑋
∗𝑍∗ < 𝜆𝑌∗𝑅2

∗2                                   (15c) 

 Γ5 < Γ4                                                  (15d) 

 𝑒1(2𝑏 + 𝑋
∗𝑍∗) < 𝑒2(2𝑏 + 𝑋

∗𝑌∗)                                               (15e) 

Here  Γ1 =
𝑎(𝑌∗

2
+𝑒1𝑏)𝑌

∗

𝑅1
∗2 +

𝑐(𝑍∗
2
+𝑒2𝑏)𝑍

∗

𝑅2
∗2 ; 

 Γ2 =
𝑎𝑌∗

3

𝑅1
∗2
+
𝑐𝑍∗

3

𝑅2
∗2
+
𝑒2𝑎𝑏𝑐(2𝑏+𝑋

∗𝑌∗)𝑌∗𝑍∗

𝜆𝑅1
∗2𝑅2

∗2
 

Γ3 =
𝑎(𝑌∗

2
+𝑒1𝑏)𝑌

∗

𝑅1
∗2 +

𝑐(𝑍∗
2
+2𝑒2𝑏)𝑍

∗

𝑅2
∗2 ; 

 Γ4 =
𝑒1𝑎

2(2𝑏 + 𝑋∗𝑌∗)𝑋∗𝑌∗2

𝑅1
∗2

[𝑟𝑅1
∗2𝑅2

∗2 − 𝑎𝐾(𝑌∗2 + 𝑒1𝑏)𝑌
∗𝑅2
∗2 − 𝑐𝐾𝑍∗3𝑅1

∗2] 

 Γ5 =
𝐾

𝑅2
∗2
(𝑒1𝑎𝑌

∗𝑅2
∗2 + 𝑒2𝑐𝑍

∗𝑅1
∗2)(𝜆2𝑍∗𝑅1

∗2𝑅2
∗2 + 𝑒1𝑒2𝑎𝑏

2𝑐𝑋∗2𝑍∗) 

Proof. Straightforward computation shows that 𝐴1, 𝐴3 and Δ are positive under the sufficient conditions (15a)-

(15e) and hence according to Routh-Hurwitz criterion all the eigenvalues of the 𝐽(𝐸4) have negative real parts. 

Thus 𝐸4 is locally asymptotically and the proof is complete.                   ■  

IV.  BASIN OF ATTRACTION 

   In this section, we will determine with the help of Lyapunov function the region of all the initial points that 

approach asymptotically to the equilibrium points (basin of attraction of the equilibrium points) of system (1).  

Theorem (3): The predator free equilibrium point 𝐸1 = (𝐾, 0,0) is a globally asymptotically stable in the sub 

region Ψ1 of   𝑅+
3  that is defined by 
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 Ψ1 = {(𝑋, 𝑌, 𝑍) ∈ 𝑅+
3 : 𝑋 ≥ 0,0 ≤ 𝑌 ≤

𝑏𝛾1

𝑎𝐾
, 0 ≤ 𝑍 ≤

𝑏(𝛾1+𝛾2)

𝑐𝐾
} 

Proof. For any initial value (𝑋, 𝑌, 𝑍) in Ψ1, define the following positive definite real valued function 𝑉1 =

(𝑋 − 𝐾 − 𝐾𝑙𝑛 (
𝑋

𝐾
)) + 𝑌 + 𝑍, that define around 𝐸1. Now by differentiate 𝑉1 with respect to 𝑡, we obtain that 

    
𝑑𝑉1

𝑑𝑡
< −

𝑟

𝐾
(𝑋 − 𝐾)2 − 𝑌 (𝛾1 −

𝑎

𝑏
𝐾𝑌) − 𝑍 (𝛾1 + 𝛾2 −

𝑐

𝑏
𝐾𝑍) 

Clearly, 
𝑑𝑉1

𝑑𝑡
 is negative definite for any initial point in Ψ1. Hence 𝐸1 is globally asymptotically stable point in  Ψ1, 

which is complete the proof.              ■  

Theorem (4): The disease free equilibrium point 𝐸2 = (�̅�, �̅�, 0) is a globally asymptotically stable in the sub 

region Ψ2 of   𝑅+
3  that is defined by 

 Ψ2 = {(𝑋, 𝑌, 𝑍) ∈ 𝑅+
3 : 𝑋 ≥ 0, 𝑌 ≥ 0,0 ≤ 𝑍 ≤

(𝛾1+𝛾2)−𝜆�̅�
𝑐

𝑏
�̅�

} 

Provided that the following sufficient conditions hold 

 (�̅�1𝑌 + 𝑏�̅� − 𝑒1𝑏𝑌)
2 < 4𝑒1𝑏�̅�

2𝑌�̅�                                                (16a) 

 𝐵 < 𝐴 + 𝐶                                                  (16b) 

here 𝐴 = −
𝑟

𝐾
(𝑋 − �̅�)2, 𝐵 =

𝑎

𝑅1�̅�1
[√�̅�2𝑌(𝑋 − �̅�) − √𝑒1𝑏�̅�(𝑌 − �̅�)]

2

 and 𝐶 = − [(𝛾1 + 𝛾2) −
𝑐

𝑏
�̅�𝑍 − 𝜆�̅�] 𝑍 

with 𝑅1 = 𝑏 + 𝑋𝑌 and �̅�1 is given in Eq. (12b). 

Proof. For any initial value (𝑋, 𝑌, 𝑍) in Ψ2, define the following positive definite real valued function 𝑉2 =

(𝑋 − �̅� − �̅�𝑙𝑛 (
𝑋

�̅�
)) + (𝑌 − �̅� − �̅�𝑙𝑛 (

𝑌

�̅�
)) + 𝑍, that define around 𝐸2. Now by differentiate 𝑉2 with respect to 𝑡, 

we obtain that 

   

𝑑𝑉2

𝑑𝑡
≤ −

𝑟

𝐾
(𝑋 − �̅�)2 − 𝑍 ((𝛾1 + 𝛾2) −

𝑐

𝑏
�̅�𝑍 − 𝜆�̅�)                                                  

+
𝑎

𝑅1�̅�1
[�̅�2𝑌(𝑋 − �̅�)2 − (�̅�1𝑌 + 𝑏�̅� − 𝑒1𝑏𝑌)(𝑋 − �̅�)(𝑌 − �̅�) + 𝑒1𝑏�̅�(𝑌 − �̅�)

2]
 

Clearly the second term of the right hand side of the above inequality is negative for any initial point in Ψ2. While 

the third term is positive under the condition (16a) that gives that 

 

𝑑𝑉2

𝑑𝑡
≤ −

𝑟

𝐾
(𝑋 − �̅�)2 − 𝑍 ((𝛾1 + 𝛾2) −

𝑐

𝑏
�̅�𝑍 − 𝜆�̅�)                

+
𝑎

𝑅1�̅�1
[√�̅�2𝑌(𝑋 − �̅�) − √𝑒1𝑏�̅�(𝑌 − �̅�)]

2  

Finally 
𝑑𝑉2

𝑑𝑡
 is negative definite for any initial point in Ψ2 under the condition (16b). Hence 𝐸2 is globally 

asymptotically stable point in  Ψ2, which is complete the proof.          ■  

Theorem (5): The susceptible predator free equilibrium point 𝐸3 = (�̂�, 0, �̂�)  is a globally asymptotically stable 

in the sub region Ψ3 of   𝑅+
3  that is defined by 

 Ψ3 = {(𝑋, 𝑌, 𝑍) ∈ 𝑅+
3 : 𝑋 ≥ 0,0 ≤ 𝑌 ≤

𝛾1+𝜆�̂�
𝑎

𝑏�̂�

, 𝑍 ≥ 0} 
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Provided that the following sufficient conditions hold 

 (�̂�2𝑍 + 𝑏�̂� − 𝑒2𝑏𝑍)
2
< 4𝑒2𝑏�̂�𝑍�̂�                               (17a) 

 �̂� < �̂� + �̂�                                                  (17b) 

here �̂� = −
𝑟

𝐾
(𝑋 − �̂�)

2
, �̂� =

𝑐

𝑅2�̂�2
[√�̂�2𝑍(𝑋 − �̂�) − √𝑒2𝑏�̂�(𝑍 − �̂�)]

2

 and �̂� = − [𝛾1 + 𝜆�̂� −
𝑎

𝑏
�̂�𝑌] 𝑌 with 𝑅2 =

𝑏 + 𝑋𝑍 and �̂�2 is given in Eq. (13b). 

Proof. For any initial value (𝑋, 𝑌, 𝑍) in Ψ3, define the following positive definite real valued function 𝑉3 =

(𝑋 − �̂� − �̂�𝑙𝑛 (
𝑋

�̂�
)) + 𝑌 + (𝑍 − �̂� − �̂�𝑙𝑛 (

𝑍

�̂�
)), that define around 𝐸3. Now by differentiate 𝑉3 with respect to 𝑡, 

we obtain that 

𝑑𝑉3
𝑑𝑡

≤ −
𝑟

𝐾
(𝑋 − �̂�)

2
− [𝛾1 + 𝜆�̂� −

𝑎

𝑏
�̂�𝑌] 𝑌                                                                   

          +
𝑐

𝑅2�̂�2
[�̂�2𝑍(𝑋 − �̂�)

2
− (�̂�2𝑍 + 𝑏�̂� − 𝑒2𝑏𝑍)(𝑋 − �̂�)(𝑍 − �̂�) + 𝑒2𝑏�̂�(𝑍 − �̂�)

2
]
 

Note that the second term of the right hand side of the above inequality is negative for any initial point in Ψ3. 
While the third term is positive under the condition (17a), which leads to: 

 

𝑑𝑉3

𝑑𝑡
< −

𝑟

𝐾
(𝑋 − �̂�)

2
− [𝛾1 + 𝜆�̂� −

𝑎

𝑏
�̂�𝑌] 𝑌                     

+
𝑐

𝑅2�̂�2
[√�̂�2𝑍(𝑋 − �̂�) − √𝑒2𝑏�̂�(𝑍 − �̂�)]

2  

 Finally 
𝑑𝑉3

𝑑𝑡
 is negative definite for any initial point in Ψ3 under the condition (17b). Hence 𝐸3 is globally 

asymptotically stable point in  Ψ3, which is complete the proof.          ■  

Theorem (6): The positive equilibrium point 𝐸4 = (𝑋
∗, 𝑌∗, 𝑍∗)  is a globally asymptotically stable in the sub 

region Ψ4 of   𝑅+
3  that is defined by 

 Ψ4 = {(𝑋, 𝑌, 𝑍) ∈ 𝑅+
3 : 𝑋 ≥ 0,

𝑏2

2𝑋∗𝑅1
∗ < 𝑌,

𝑏2

2𝑋∗𝑅2
∗ < 𝑍} 

Provided that the following sufficient conditions hold 

 [(
𝑅1
∗

𝑒1
−
𝑅2
∗

𝑒2
)
𝜆

𝑏
]
2

<
𝑎𝑐𝑋∗

2

𝑅1𝑅2
                                    (18a) 

 𝐵∗ + 𝐶∗ +𝐷∗ < 𝐴∗                                                 (18b) 

Here 𝑅1, 𝑅2, 𝑅1
∗ and 𝑅2

∗ as given above. While 𝐴∗ =
𝑟

𝐾
(𝑋 − �̂�)

2
, 𝐵∗ =

𝑎

𝑅1𝑅1
∗ [𝑌

∗√𝑌(𝑋 − 𝑋∗) − √
𝑋∗𝑅1

∗

2
(𝑌 − 𝑌∗)]

1
2

, 

𝐶∗ =
𝑐

𝑅2𝑅2
∗ [𝑍

∗√𝑍(𝑋 − 𝑋∗) − √
𝑋∗𝑅2

∗

2
(𝑍 − 𝑍∗)]

1
2

 and 𝐷∗ = [√
𝑎𝑋∗

2𝑅1
 (𝑌 − 𝑌∗) − √

𝑐𝑋∗

2𝑅2
(𝑍 − 𝑍∗)]

1
2

. 

Proof. For any initial value (𝑋, 𝑌, 𝑍) in Ψ4, define the following positive definite real valued function that define 

around 𝐸4 
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𝑉4 = (𝑋 − 𝑋
∗ − 𝑋∗𝑙𝑛 (

𝑋

𝑋∗
)) +

𝑅1
∗

𝑒1𝑏
(𝑌 − 𝑌∗ − 𝑌∗𝑙𝑛 (

𝑌

𝑌∗
))

+
𝑅2
∗

𝑒2𝑏
(𝑍 − 𝑍∗ − 𝑍∗𝑙𝑛 (

𝑍

𝑍∗
))

.  

Now by differentiate 𝑉4 with respect to 𝑡, we obtain that 

 

𝑑𝑉4

𝑑𝑡
= −

𝑟

𝐾
(𝑋 − 𝑋∗)2                                                                                                         

+
𝑎

𝑅1𝑅1
∗ [𝑌

∗2𝑌(𝑋 − 𝑋∗)2 − 𝑏𝑌∗(𝑋 − 𝑋∗)(𝑌 − 𝑌∗) +
𝑋∗𝑅1

∗

2
(𝑌 − 𝑌∗)2]

+
𝑐

𝑅2𝑅2
∗ [𝑍

∗2𝑍(𝑋 − 𝑋∗)2 − 𝑏𝑍∗(𝑋 − 𝑋∗)(𝑍 − 𝑍∗) +
𝑋∗𝑅2

∗

2
(𝑍 − 𝑍∗)2]

+ [
𝑎𝑋∗

2𝑅1
(𝑌 − 𝑌∗)2 − (

𝑅1
∗

𝑒1
−
𝑅2
∗

𝑒2
)
𝜆

𝑏
(𝑌 − 𝑌∗)(𝑍 − 𝑍∗) +

𝑐𝑋∗

2𝑅2
(𝑍 − 𝑍∗)2]

 

Therefore for any initial point in the region Ψ4 and an application of condition (18a) we get that 

 

𝑑𝑉4

𝑑𝑡
< −

𝑟

𝐾
(𝑋 − 𝑋∗)2 +

𝑎

𝑅1𝑅1
∗ [𝑌

∗√𝑌(𝑋 − 𝑋∗) − √
𝑋∗𝑅1

∗

2
(𝑌 − 𝑌∗)]

1
2

                                

+
𝑐

𝑅2𝑅2
∗ [𝑍

∗√𝑍(𝑋 − 𝑋∗) − √
𝑋∗𝑅2

∗

2
(𝑍 − 𝑍∗)]

1
2

+ [√
𝑎𝑋∗

2𝑅1
 (𝑌 − 𝑌∗) − √

𝑐𝑋∗

2𝑅2
(𝑍 − 𝑍∗)]

1
2

 

Consequently according to condition (18b) we obtain that 
𝑑𝑉4

𝑑𝑡
 is negative definite for any initial point in Ψ4. Hence 

𝐸4 is globally asymptotically stable point in  Ψ4, which is complete the proof.        ■  

V.  DISCUSSION AND CONCLUSIONS 

In this paper, a prey-predator system with vertically transmitted infectious disease in predator population is 

proposed and analyzed. The existence, uniqueness and boundedness of the solution of the system are discussed. 

The existence of all possible equilibrium points is studied. The local stability analysis of each of these equilibrium 

points is investigated. The basin of attraction of all locally stable points is determined. It is observed that, the 

predator free equilibrium point is always locally asymptotically stable. Indeed it is a globally asymptotically stable 

in the sub region Ψ1 that given in theorem (2) above, as shown in the following typical figure, Fig. (1), for the 

following set of hypothetical biological feasible data. 

 
𝑟 = 2,𝐾 = 400,𝑎 = 1, 𝑏 = 40, 𝑐 = 0.9, 𝑛 = 0.1

𝑒1 = 0.85, 𝑒2 = 0.4, 𝛾1 = 0.05, 𝛾2 = 0.4
                                (19) 

Clearly Fig. (1) shows the global stability of the predator free equilibrium point, due to starting from different sets 

of initial points. Consequently, system (1) cannot be persist (coexistence of all the species for all the time) in the 

𝑅+
3  , and the susceptible predator, infected predator or total predator species should be extinction due to the 

stability of predator free equilibrium point. On the other hand there is a possibility to get persistence of the system 

in the specific sub region of  𝑅+
3  under certain conditions such as those given by theorem (6).  

Furthermore, its observed that for the data given by Eq. (19) with varying one parameter of the system’s 

parameters at a time don’t have qualitative change of the dynamics of system (1) and the trajectory of the system 

still approaches to predator free equilibrium point. However still there are a possibilities to get a data, which 

satisfy the existence and stability conditions of the other equilibrium point.   
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Fig. (1): The trajectory of system (1) approaches asymptotically to the predator free equilibrium point 𝑬𝟏 = (𝟒𝟎𝟎, 𝟎, 𝟎) 
for the data given by Eq. (19). (a) The trajectory starting from (40,30.20). (b) The trajectory starting from (45,35.25). (c) 

The trajectory starting from (35,25.15). 
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